Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479809

RESUMO

First-order thalamic nuclei receive feedforward signals from peripheral receptors and relay these signals to primary sensory cortex. Primary sensory cortex, in turn, provides reciprocal feedback to first-order thalamus. Because the vast majority of sensory thalamocortical inputs target primary sensory cortex, their complementary corticothalamic neurons are assumed to be similarly restricted to primary sensory cortex. We upend this assumption by characterizing morphologically diverse neurons in multiple mid-level visual cortical areas of the primate (Macaca mulatta) brain that provide direct feedback to the primary visual thalamus, the dorsal lateral geniculate nucleus (LGN). Although the majority of geniculocortical neurons project to primary visual cortex (V1), a minority, located mainly in the koniocellular LGN layers, provide direct input to extrastriate visual cortex. These "V1-bypassing" projections may be implicated in blindsight. We hypothesized that geniculocortical inputs directly targeting extrastriate cortex should be complemented by reciprocal corticogeniculate circuits. Using virus-mediated circuit tracing, we discovered corticogeniculate neurons throughout three mid-level extrastriate areas: MT, MST, and V4. Quantitative morphological analyses revealed nonuniform distributions of unique cell types across areas. Many extrastriate corticogeniculate neurons had spiny stellate morphology, suggesting possible targeting of koniocellular LGN layers. Importantly though, multiple morphological types were observed across areas. Such morphological diversity could suggest parallel streams of V1-bypassing corticogeniculate feedback at multiple stages of the visual processing hierarchy. Furthermore, the presence of corticogeniculate neurons across visual cortex necessitates a reevaluation of the LGN as a hub for visual information rather than a simple relay.


Assuntos
Córtex Visual , Vias Visuais , Animais , Retroalimentação , Vias Visuais/fisiologia , Tálamo/fisiologia , Macaca mulatta , Córtex Visual/fisiologia
2.
PLoS Comput Biol ; 19(11): e1011567, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976328

RESUMO

Studies investigating neural information processing often implicitly ask both, which processing strategy out of several alternatives is used and how this strategy is implemented in neural dynamics. A prime example are studies on predictive coding. These often ask whether confirmed predictions about inputs or prediction errors between internal predictions and inputs are passed on in a hierarchical neural system-while at the same time looking for the neural correlates of coding for errors and predictions. If we do not know exactly what a neural system predicts at any given moment, this results in a circular analysis-as has been criticized correctly. To circumvent such circular analysis, we propose to express information processing strategies (such as predictive coding) by local information-theoretic quantities, such that they can be estimated directly from neural data. We demonstrate our approach by investigating two opposing accounts of predictive coding-like processing strategies, where we quantify the building blocks of predictive coding, namely predictability of inputs and transfer of information, by local active information storage and local transfer entropy. We define testable hypotheses on the relationship of both quantities, allowing us to identify which of the assumed strategies was used. We demonstrate our approach on spiking data collected from the retinogeniculate synapse of the cat (N = 16). Applying our local information dynamics framework, we are able to show that the synapse codes for predictable rather than surprising input. To support our findings, we estimate quantities applied in the partial information decomposition framework, which allow to differentiate whether the transferred information is primarily bottom-up sensory input or information transferred conditionally on the current state of the synapse. Supporting our local information-theoretic results, we find that the synapse preferentially transfers bottom-up information.


Assuntos
Encéfalo , Cognição , Rede Nervosa , Sinapses
3.
Curr Res Neurobiol ; 4: 100096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397805

RESUMO

Burst activity is a ubiquitous feature of thalamic neurons and is well documented for visual neurons in the lateral geniculate nucleus (LGN). Although bursts are often associated with states of drowsiness, they are also known to convey visual information to cortex and are particularly effective in evoking cortical responses. The occurrence of thalamic bursts depends on (1) the inactivation gate of T-type Ca2+ channels (T-channels), which become de-inactivated following periods of increased membrane hyperpolarization, and (2) the opening of the T-channel activation gate, which has voltage-threshold and rate-of-change (δv/δt) requirements. Given the time/voltage relationship for the generation of Ca2+ potentials that underlie burst events, it is reasonable to predict that geniculate bursts are influenced by the luminance contrast of drifting grating stimuli, with the null phase of higher contrast stimuli evoking greater hyperpolarization followed by a larger dv/dt than the null phase of lower contrast stimuli. To determine the relationship between stimulus contrast and burst activity, we recorded the spiking activity of cat LGN neurons while presenting drifting sine-wave gratings that varied in luminance contrast. Results show that burst rate, reliability, and timing precision are significantly greater with higher contrast stimuli compared with lower contrast stimuli. Additional analysis from simultaneous recordings of synaptically connected retinal ganglion cells and LGN neurons further reveals the time/voltage dynamics underlying burst activity. Together, these results support the hypothesis that stimulus contrast and the biophysical properties underlying the state of T-type Ca2+ channels interact to influence burst activity, presumably to facilitate thalamocortical communication and stimulus detection.

4.
eNeuro ; 9(4)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35927025

RESUMO

Before visual information from the retina reaches primary visual cortex (V1), it is dynamically filtered by the lateral geniculate nucleus (LGN) of the thalamus, the first location within the visual hierarchy at which nonretinal structures can significantly influence visual processing. To explore the form and dynamics of geniculate filtering we used data from monosynpatically connected pairs of retinal ganglion cells (RGCs) and LGN relay cells in the cat that, under anesthetized conditions, were stimulated with binary white noise and/or drifting sine-wave gratings to train models of increasing complexity to predict which RGC spikes were relayed to cortex, what we call "relay status." In addition, we analyze and compare a smaller dataset recorded in the awake state to assess how anesthesia might influence our results. Consistent with previous work, we find that the preceding retinal interspike interval (ISI) is the primary determinate of relay status with only modest contributions from longer patterns of retinal spikes. Including the prior activity of the LGN cell further improved model predictions, primarily by indicating epochs of geniculate burst activity in recordings made under anesthesia, and by allowing the model to capture gain control-like behavior within the awake LGN. Using the same modeling framework, we further demonstrate that the form of geniculate filtering changes according to the level of activity within the early visual circuit under certain stimulus conditions. This finding suggests a candidate mechanism by which a stimulus specific form of gain control may operate within the LGN.


Assuntos
Corpos Geniculados , Vias Visuais , Estimulação Luminosa/métodos , Retina , Células Ganglionares da Retina , Tálamo
5.
Front Syst Neurosci ; 16: 818633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35177969

RESUMO

Throughout the brain, parallel processing streams compose the building blocks of complex neural functions. One of the most salient models for studying the functional specialization of parallel visual streams in the primate brain is the lateral geniculate nucleus (LGN) of the dorsal thalamus, through which the parvocellular and magnocellular channels, On-center and Off-center channels, and ipsilateral and contralateral eye channels are maintained and provide the foundation for cortical processing. We examined three aspects of neural processing in these streams: (1) the relationship between extraclassical surround suppression, a widespread visual computation thought to represent a canonical neural computation, and the parallel channels of the LGN; (2) the magnitude of binocular interaction in the parallel streams; and (3) the magnitude of suppression elicited by perceptual competition (binocular rivalry) in each stream. Our results show that surround suppression is almost exclusive to Off channel cells; further, we found evidence for two different components of monocular surround suppression-an early-stage suppression exhibited by all magnocellular cells, and a late-stage suppression exhibited only by Off cells in both the parvocellular and magnocellular pathways. This finding indicates that stream-specific circuits contribute to surround suppression in the primate LGN and suggests a distinct role for suppression in the Off channel to the cortex. We also examined the responses of LGN neurons in alert macaque monkeys to determine whether neurons that supply the cortex with visual information are influenced by stimulation of both eyes. Our results demonstrate that LGN neurons are not influenced by stimulation of the non-dominant eye. This was the case when dichoptic stimuli were presented to classical receptive fields of neurons, extraclassical receptive fields of neurons, and when stimuli were appropriate to produce the perception of binocular rivalry.

6.
Neuron ; 109(19): 3048-3054, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34297915

RESUMO

For animals to survive, they must interact with their environment, taking in sensory information and making appropriate motor responses. Early on during vertebrate evolution, this was accomplished with neural circuits located mostly within the spinal cord and brainstem. As the cerebral cortex evolved, it provided additional and powerful advantages for assessing environmental cues and guiding appropriate responses. Importantly, the cerebral cortex was added onto an already functional nervous system. Moreover, every cortical area, including areas traditionally considered sensory, provides input to the subcortical motor structures that are bottlenecks for driving action. These facts have important ramifications for cognitive aspects of motor control. Here we consider the evolution of cortical mechanisms for attention from the perspective of having to work through these subcortical bottlenecks. From this perspective, many features of attention can be explained, including the preferential engagement of some cortical areas at the cost of disengagement from others to improve appropriate behavioral responses.


Assuntos
Atenção/fisiologia , Comportamento/fisiologia , Evolução Biológica , Córtex Cerebral/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Humanos , Rede Nervosa/fisiologia
7.
J Neurosci ; 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34103362

RESUMO

Gain-control mechanisms adjust neuronal responses to accommodate the wide range of stimulus conditions in the natural environment. Contrast gain control and extraclassical surround suppression are two manifestations of gain control that govern the responses of neurons in the early visual system. Understanding how these two forms of gain control interact has important implications for the detection and discrimination of stimuli across a range of contrast conditions. Here, we report that stimulus contrast affects spatial integration in the lateral geniculate nucleus of alert macaque monkeys (male and female), whereby neurons exhibit a reduction in the strength of extraclassical surround suppression and an expansion in the preferred stimulus size with low-contrast stimuli compared to high-contrast stimuli. Effects were greater for magnocellular neurons than for parvocellular neurons, indicating stream-specific interactions between stimulus contrast and stimulus size. Within the magnocellular pathway, contrast-dependent effects were comparable for ON-center and OFF-center neurons, despite ON neurons having larger receptive fields, less pronounced surround suppression, and more pronounced contrast gain control than OFF neurons. Taken together, these findings suggest that the parallel streams delivering visual information from retina to primary visual cortex, serve not only to broaden the range of signals delivered to cortex, but also to provide a substrate for differential interactions between stimulus contrast and stimulus size that may serve to improve stimulus detection and stimulus discrimination under pathway-specific lower and higher contrast conditions, respectively.SIGNIFICANCEStimulus contrast is a salient feature of visual scenes. Here we examine the influence of stimulus contrast on spatial integration in the lateral geniculate nucleus (LGN). Our results demonstrate that increases in contrast generally increase extraclassical suppression and decrease the size of optimal stimuli, indicating a reduction in the extent of visual space from which LGN neurons integrate signals. Differences between magnocellular and parvocellular neurons are noteworthy and further demonstrate that the feedforward parallel pathways to cortex increase the range of information conveyed for downstream cortical processing, a range broadened by diversity in the ON and OFF pathways. These results have important implications for more complex visual processing that underly the detection and discrimination of stimuli under varying natural conditions.

8.
J Neurosci ; 39(29): 5697-5710, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31109958

RESUMO

Retinal signals are transmitted to cortex via neurons in the lateral geniculate nucleus (LGN), where they are processed in burst or tonic response mode. Burst mode occurs when LGN neurons are sufficiently hyperpolarized for T-type Ca2+ channels to deinactivate, allowing them to open in response to depolarization, which can trigger a high-frequency sequence of Na+-based spikes (i.e., burst). In contrast, T-type channels are inactivated during tonic mode and do not contribute to spiking. Although burst mode is commonly associated with sleep and the disruption of retinogeniculate communication, bursts can also be triggered by visual stimulation, thereby transforming the retinal signals relayed to the cortex. To determine how burst mode affects retinogeniculate communication, we made recordings from monosynaptically connected retinal ganglion cells and LGN neurons in male/female cats during visual stimulation. Our results reveal a robust augmentation of retinal signals within the LGN during burst mode. Specifically, retinal spikes were more effective and often triggered multiple LGN spikes during periods likely to have increased T-type Ca2+ channel activity. Consistent with the biophysical properties of T-type Ca2+ channels, analysis revealed that effect magnitude was correlated with the duration of the preceding thalamic interspike interval and occurred even in the absence of classically defined bursts. Importantly, the augmentation of geniculate responses to retinal input was not associated with a degradation of visual signals. Together, these results indicate a graded nature of response mode and suggest that, under certain conditions, bursts facilitate the transmission of visual information to the cortex by amplifying retinal signals.SIGNIFICANCE STATEMENT The thalamus is the gateway for retinal information traveling to the cortex. The lateral geniculate nucleus, like all thalamic nuclei, has two classically defined categories of spikes-tonic and burst-that differ in their underlying cellular mechanisms. Here we compare retinogeniculate communication during burst and tonic response modes. Our results show that retinogeniculate communication is enhanced during burst mode and visually evoked thalamic bursts, thereby augmenting retinal signals transmitted to cortex. Further, our results demonstrate that the influence of burst mode on retinogeniculate communication is graded and can be measured even in the absence of classically defined thalamic bursts.


Assuntos
Potenciais de Ação/fisiologia , Corpos Geniculados/fisiologia , Retina/fisiologia , Tálamo/fisiologia , Vias Visuais/fisiologia , Animais , Gatos , Feminino , Masculino , Estimulação Luminosa/métodos
9.
J Neurosci ; 39(6): 1066-1076, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30541911

RESUMO

Attention is a critical component of visual perception; however, the mechanisms of attention at the granular level are poorly understood. One possible mechanism by which attention modulates neuronal activity is to control the efficacy of communication between connected neurons; however, it is unclear whether attention alters communication efficacy across a variety of neuronal circuits. In parallel, attentional modulation of neuronal firing rate is not uniform but depends upon the match between neuronal feature selectivity and the feature required for successful task completion. Here we tested whether modulation of communication efficacy is a viable mechanism of attention by assessing whether it is consistent across a variety of neuronal circuits and dependent upon the type of information conveyed in each circuit. We identified monosynaptically connected pairs of V1 neurons through cross-correlation of neuronal spike trains recorded in adult female macaque monkeys performing attention-demanding contrast-change detection tasks. Attention toward the stimulus in the receptive field of recorded neurons significantly facilitated the efficacy of communication among connected pairs of V1 neurons. The amount of attentional enhancement depended upon neuronal physiology, with larger facilitation for circuits conveying information about task-relevant features. Furthermore, presynaptic activity was more determinant of attentional enhancement of communication efficacy than postsynaptic activity, and feedforward local circuits often displayed the largest facilitation with attention. Together, these findings highlight attentional modulation of communication efficacy as a generalized mechanism of attention and demonstrate that attentional modulation at the granular level depends on the relevance of feature-specific information conveyed by neuronal circuits.SIGNIFICANCE STATEMENT How we pay attention to objects and locations in the visual environment has a profound impact on visual perception. Individual neurons in the visual cortex are similarly regulated by shifts in visual attention; however, the rules that govern whether and how attention alters neuronal activity are not known. In this study, we explored whether attention regulates communication between connected pairs of neurons in the primary visual cortex. We observed robust attentional facilitation of communication among these circuits. Furthermore, the extent to which the circuits were facilitated by attention depended on whether the information they conveyed was relevant for the particular attention task.


Assuntos
Atenção/fisiologia , Córtex Visual/fisiologia , Animais , Comunicação Celular/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Evocados Visuais , Feminino , Macaca mulatta , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Desempenho Psicomotor/fisiologia , Sinapses/fisiologia , Córtex Visual/citologia , Percepção Visual/fisiologia
10.
Eur J Neurosci ; 49(8): 1061-1068, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29520859

RESUMO

Visual information processed in the retina is transmitted to primary visual cortex via relay cells in the lateral geniculate nucleus (LGN) of the dorsal thalamus. Although retinal ganglion cells are the primary source of driving input to LGN neurons, not all retinal spikes are transmitted to the cortex. Here, we investigate the relationship between stimulus contrast and retinogeniculate communication and test the hypothesis that both the time course and strength of retinogeniculate interactions are dynamic and dependent on stimulus contrast. By simultaneously recording the spiking activity of synaptically connected retinal ganglion cells and LGN neurons in the cat, we show that the temporal window for retinogeniculate integration and the effectiveness of individual retinal spikes are inversely proportional to stimulus contrast. This finding provides a mechanistic understanding for the phenomenon of augmented contrast gain control in the LGN-a nonlinear receptive field property of LGN neurons whereby response gain during low-contrast stimulation is enhanced relative to response gain during high-contrast stimulation. In addition, these results support the view that network interactions beyond the retina play an essential role in transforming visual signals en route from retina to cortex.


Assuntos
Sensibilidades de Contraste/fisiologia , Corpos Geniculados/fisiologia , Células Ganglionares da Retina/fisiologia , Potenciais de Ação , Adaptação Fisiológica , Animais , Gatos , Visão Ocular , Vias Visuais/fisiologia
11.
J Comp Neurol ; 527(3): 640-650, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29524229

RESUMO

Pyramidal cells in cortical Layers 5 and 6 are the only cells in the cerebral cortex with axons that leave the cortex to influence the thalamus. Layer 6 cells provide modulatory feedback input to all thalamic nuclei. Layer 5 cells provide driving input to higher-order thalamic nuclei and do not innervate first-order nuclei, which get their driving inputs from subcortical sources. Higher-order nuclei innervated by Layer 5 cells thus seem to be involved with cortico-thalamo-cortical communication. The Layer 5 axons branch to also target additional subcortical structures that mediate interactions with the external environment. These corticofugal pathways represent the only means by which the cortex influences the rest of the neuraxis and thus are essential for proper cortical function and species survival. Here we review current understanding of the corticofugal pathways from Layers 5 and 6 and speculate on their functional contributions to neural processing and behavior.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Humanos , Células Piramidais/fisiologia
12.
J Neurosci ; 37(48): 11549-11558, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29066558

RESUMO

Neural circuits and the cells that comprise them undergo developmental changes in the spatial organization of their connections and in their temporal response properties. Within the lateral geniculate nucleus (LGN) of the dorsal thalamus, these changes have pronounced effects on the spatiotemporal receptive fields (STRFs) of neurons. An open and unresolved question is how STRF maturation affects stimulus-evoked correlated activity between pairs of LGN neurons during development. This is an important question to answer because stimulus-evoked correlated activity likely plays a role in establishing the specificity of thalamocortical connectivity and the receptive fields (RFs) of postsynaptic cortical neurons. Using multielectrode recording methods and white noise stimuli, we recorded neural activity from ensembles of LGN neurons in cats across early development. As expected, there was a progressive maturation of the spatial and temporal properties of visual responses. Using drifting bar stimuli and cross-correlation analysis, we also determined the orientation-tuning bandwidth of correlated activity between pairs of LGN neurons at different stages of development (Sillito and Jones, 2002; Andolina et al., 2007; Stanley et al., 2012; Kelly et al., 2014). Despite the larger RFs and slower responses of immature LGN neurons compared with mature neurons, our results show that correlated activity in the LGN was as tightly tuned for orientation early in development as it was in the adult. Closer examination revealed this age-invariant orientation tuning of correlated activity likely involves cellular mechanisms related to spike fatigue in young animals and a progressive decrease in response latency with development.SIGNIFICANCE STATEMENT Orientation tuning is a fundamental property of neurons in primary visual cortex. An important and unresolved question is how orientation tuning emerges during brain development. This study explores a potential mechanism for the establishment of orientation tuning based on correlated activity patterns among ensembles of maturing neurons in the lateral geniculate nucleus (LGN) of the thalamus. Results show that correlated activity between pairs of LGN neurons is more tightly tuned than predictions based simply on receptive field size, indicating that correlated activity has the properties needed to play an important role in the development of geniculocortical circuits and the emergence of cortical orientation tuning.


Assuntos
Potenciais de Ação/fisiologia , Corpos Geniculados/crescimento & desenvolvimento , Orientação/fisiologia , Estimulação Luminosa/métodos , Animais , Animais Recém-Nascidos , Gatos , Feminino , Masculino , Córtex Visual/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento
13.
J Neurosci ; 37(1): 226-235, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28053044

RESUMO

Extraclassical surround suppression is a prominent receptive field property of neurons in the lateral geniculate nucleus (LGN) of the dorsal thalamus, influencing stimulus size tuning, response gain control, and temporal features of visual responses. Despite evidence for the involvement of both retinal and nonretinal circuits in the generation of extraclassical suppression, we lack an understanding of the relative roles played by these pathways and how they interact during visual stimulation. To determine the contribution of retinal and nonretinal mechanisms to extraclassical suppression in the feline, we made simultaneous single-unit recordings from synaptically connected retinal ganglion cells and LGN neurons and measured the influence of stimulus size on the spiking activity of presynaptic and postsynaptic neurons. Results show that extraclassical suppression is significantly stronger for LGN neurons than for their retinal inputs, indicating a role for extraretinal mechanisms. Further analysis revealed that the enhanced suppression can be accounted for by mechanisms that suppress the effectiveness of retinal inputs in evoking LGN spikes. Finally, an examination of the time course for the onset of extraclassical suppression in the LGN and the size-dependent modulation of retinal spike efficacy suggests the early phase of augmented suppression involves local thalamic circuits. Together, these results demonstrate that the LGN is much more than a simple relay for retinal signals to cortex; it also filters retinal spikes dynamically on the basis of stimulus statistics to adjust the gain of visual signals delivered to cortex. SIGNIFICANCE STATEMENT: The lateral geniculate nucleus (LGN) is the gateway through which retinal information reaches the cerebral cortex. Within the LGN, neuronal responses are often suppressed by stimuli that extend beyond the classical receptive field. This form of suppression, called extraclassical suppression, serves to adjust the size tuning, response gain, and temporal response properties of neurons. Given the important influence of extraclassical suppression on visual signals delivered to cortex, we performed experiments to determine the circuit mechanisms that contribute to extraclassical suppression in the LGN. Results show that suppression is augmented beyond that provided by direct retinal inputs and delayed, consistent with polysynaptic inhibition. Importantly, these mechanisms influence the effectiveness of incoming retinal signals, thereby filtering the signals ultimately conveyed to cortex.


Assuntos
Corpos Geniculados/fisiologia , Retina/fisiologia , Animais , Gatos , Feminino , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa , Receptores Pré-Sinápticos/fisiologia , Células Ganglionares da Retina/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Vias Visuais/fisiologia
14.
Neuron ; 90(2): 388-99, 2016 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27041497

RESUMO

Corticothalamic circuits are essential for reciprocal information exchange between the thalamus and cerebral cortex. Nevertheless, the role of corticothalamic circuits in sensory processing remains a mystery. In the visual system, afferents from retina to the lateral geniculate nucleus (LGN) and from LGN to primary visual cortex (V1) are organized into functionally distinct parallel processing streams. Physiological evidence suggests corticogeniculate feedback may be organized into parallel streams; however, little is known about the diversity of corticogeniculate neurons, their local computations, or the structure-function relationship among corticogeniculate neurons. We used a virus-mediated approach to label and reconstruct the complete dendritic and local axonal arbors of identified corticogeniculate neurons in the macaque monkey. Our results reveal morphological substrates for parallel streams of corticogeniculate feedback based on distinct classes of neurons in V1 and V2. These results support the hypothesis that distinct populations of feedback neurons provide independent and unique information to the LGN.


Assuntos
Retroalimentação Sensorial/fisiologia , Corpos Geniculados/fisiologia , Córtex Visual/fisiologia , Animais , Corpos Geniculados/citologia , Macaca mulatta , Masculino , Neurônios/citologia , Neurônios/fisiologia , Estimulação Luminosa , Córtex Visual/citologia , Vias Visuais/citologia , Vias Visuais/fisiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-26924964

RESUMO

Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures. Our results indicate that: (1) LGN neurons typically reach their half-maximal response at lower contrasts than their individual retinal inputs and (2) LGN neurons exhibit greater contrast-dependent phase advance (CDPA) than their retinal inputs. Further analyses suggests that increased sensitivity relies on spatial convergence of multiple retinal inputs, while increased CDPA is achieved, in part, on temporal summation of arriving signals.


Assuntos
Sensibilidades de Contraste/fisiologia , Corpos Geniculados/fisiologia , Retina/fisiologia , Células Receptoras Sensoriais/fisiologia , Vias Visuais/fisiologia , Potenciais de Ação/fisiologia , Animais , Mapeamento Encefálico , Gatos , Eletrocardiografia , Eletroencefalografia , Feminino , Corpos Geniculados/citologia , Masculino , Modelos Biológicos , Estimulação Luminosa , Retina/citologia
16.
Neuron ; 86(3): 605-7, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25950627

RESUMO

The thalamus and neocortex are intimately interconnected via a reciprocal arrangement of feedforward and feedback projections. In this issue of Neuron, Crandall et al. (2015) provide key insight into the functional dynamics of feedback projections and reveal the cellular and circuit mechanisms that underlie a rate-dependent switch in the net influence, suppression versus excitation, that cortex can exert on thalamic relay cells.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Vias Neurais/fisiologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais
17.
J Neurophysiol ; 113(7): 2605-17, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25652919

RESUMO

Extraclassical surround suppression strongly modulates responses of neurons in the retina, lateral geniculate nucleus (LGN), and primary visual cortex. Although a great deal is known about the spatial properties of extraclassical suppression and the role it serves in stimulus size tuning, relatively little is known about how extraclassical suppression shapes visual processing in the temporal domain. We recorded the spiking activity of retinal ganglion cells and LGN neurons in the cat to test the hypothesis that extraclassical suppression influences temporal features of visual responses in the early visual system. Our results demonstrate that extraclassical suppression not only shifts the distribution of interspike intervals in a manner that decreases the efficacy of neuronal communication, it also decreases the reliability of neuronal responses to visual stimuli and it decreases the duration of visual responses, an effect that underlies a rightward shift in the temporal frequency tuning of LGN neurons. Taken together, these results reveal a dynamic relationship between extraclassical suppression and the temporal features of neuronal responses.


Assuntos
Corpos Geniculados/fisiologia , Inibição Neural , Neurônios/fisiologia , Células Ganglionares da Retina/fisiologia , Campos Visuais/fisiologia , Potenciais de Ação , Animais , Gatos , Sensibilidades de Contraste/fisiologia , Feminino , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa
18.
Annu Rev Vis Sci ; 1: 351-371, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28217740

RESUMO

The thalamus is the heavily interconnected partner of the neocortex. All areas of the neocortex receive afferent input from and send efferent projections to specific thalamic nuclei. Through these connections, the thalamus serves to provide the cortex with sensory input, and to facilitate interareal cortical communication and motor and cognitive functions. In the visual system, the lateral geniculate nucleus (LGN) of the dorsal thalamus is the gateway through which visual information reaches the cerebral cortex. Visual processing in the LGN includes spatial and temporal influences on visual signals that serve to adjust response gain, transform the temporal structure of retinal activity patterns, and increase the signal-to-noise ratio of the retinal signal while preserving its basic content. This review examines recent advances in our understanding of LGN function and circuit organization and places these findings in a historical context.

19.
J Neurosci ; 34(22): 7639-44, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24872567

RESUMO

Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex.


Assuntos
Ondas Encefálicas/fisiologia , Corpos Geniculados/fisiologia , Periodicidade , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Potenciais Evocados Visuais/fisiologia , Feminino , Macaca mulatta , Masculino
20.
Eur J Neurosci ; 39(4): 593-601, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24251425

RESUMO

The spatial components of a visual scene are processed neurally in a sequence of coarse features followed by fine features. This coarse-to-fine temporal stream was initially considered to be a cortical function, but has recently been demonstrated in the dorsal lateral geniculate nucleus. The goal of this study was to test the hypothesis that coarse-to-fine processing is present at earlier stages of visual processing in the retinal ganglion cells that supply lateral geniculate nucleus (LGN) neurons. To compare coarse-to-fine processing in the cat's visual system, we measured the visual responses of connected neuronal pairs from the retina and LGN, and separate populations of cells from each region. We found that coarse-to-fine processing was clearly present at the ganglion cell layer of the retina. Interestingly, peak and high-spatial-frequency cutoff responses were higher in the LGN than in the retina, indicating that there was a progressive cascade of coarse-to-fine information from the retina to the LGN to the visual cortex. The analysis of early visual pathway receptive field characteristics showed that the physiological response interplay between the center and surround regions was consistent with coarse-to-fine features and may provide a primary role in the underlying mechanism. Taken together, the results from this study provided a framework for understanding the emergence and refinement of coarse-to-fine processing in the visual system.


Assuntos
Potenciais Evocados Visuais , Células Ganglionares da Retina/fisiologia , Vias Visuais/fisiologia , Animais , Gatos , Corpos Geniculados/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...